A pH-responsive, low crosslinked, molecularly imprinted insulin delivery system

نویسندگان

  • Songjun Li
  • Ashutosh Tiwari
  • Yi Ge
  • Dan Fei
چکیده

A new type of insulin delivery system capable of better self-regulating the release of insulin was reported in this study. This insulin delivery system was made of a low crosslinked insulin-imprinted hydrogel that exhibited pH-dependent interpolymer interactions between poly(methacrylic acid) (PMAA) and poly(ethylene glycol) (PEG). At acidic conditions (such as pH 3.5), this delivery system resembled a highly crosslinked imprinted hydrogel and demonstrated a relatively slow release due to the formation of the PMAA-PEG complexes, which significantly increased physical crosslinking within the hydrogel interior and largely fixed the imprinted networks. On the contrary, at neutral or basic conditions (such as pH 7.4), this delivery system was comparable to a non-imprinted hydrogel and caused a rapid release resulting from the dissociation of the PMAA-PEG complexes. Unlike previously reported non-imprinted hydrogels and highly crosslinked imprinted polymers, which lack either molecular recognition ability or switchable imprinted networks, this unique insulin delivery system was composed of tunable and low crosslinked imprinted networks, which thereby enabled better self-regulation of insulin delivery. Copyright © 2010 VBRI press.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecularly Imprinted Polymers with Stimuli-Responsive Affinity: Progress and Perspectives

Intelligent stimuli-responsive molecularly imprinted polymers (SR-MIPs) have attracted considerable research interest in recent years due to the potential applications in drug delivery, biotechnology and separation sciences. This review comprehensively summarizes various SR-MIPs, including the design and applications of thermo-responsive MIPs, pH-responsive MIPs, photo-responsive MIPs, biomolec...

متن کامل

Biomimetic insulin-imprinted polymer nanoparticles as a potential oral drug delivery system.

In this study, we investigate molecularly imprinted polymers (MIPs), which form a three-dimensional image of the region at and around the active binding sites of pharmaceutically active insulin or are analogous to b cells bound to insulin. This approach was employed to create a welldefined structure within the nanospace cavities that make up functional monomers by cross-linking. The obtained MI...

متن کامل

Expansile crosslinked polymersomes for pH sensitive delivery of doxorubicin.

We report a new crosslinked polymersome with pH-responsive swelling properties through acidic hydrolysis of hydrophobic contents from the amphiphilic polymer chains. Its unique stability under physiological conditions and large swelling capability under low pH conditions give this polymersome promising potential for anticancer drug delivery.

متن کامل

Fabrication of a Selective and Sensitive Electrochemical Sensor Modified with Magnetic Molecularly Imprinted Polymer for Amoxicillin

A modified electrochemical sensor for the determination of amoxicillin (AMX) was reported in this paper. The magnetic molecularly imprinted polymer (MMIP) were suspended in AMX solution and then collected on the surface of a magnetic carbon paste electrode (CPE) via a permanent magnet, situated within the carbon paste electrode and then the voltammetry signals were recorded. It was confirmed th...

متن کامل

Molecular imprinting within hydrogels.

Hydrogels have been used primarily in the pharmaceutical field as carriers for delivery of various drugs, peptides and proteins. These systems have included stimuli-responsive gels that exhibit reversible swelling behavior and hence can show modulated release in response to external stimuli such as pH, temperature, ionic strength, electric field, or specific analyte concentration gradients. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010